MINDSHARE 2024 AGENDA

SCAN NOW!

The Vital Role of Randomness in Cybersecurity (and What Happens When It Fails)

The Problem WHAT IS RANDOM?

Can you predict the next digit? They look pretty random, right?

The Problem WHAT IS RANDOM?

How about now?

It's just consecutive digits from the number π Completely predictable with a mathematical formula

The Problem

RANDOMNESS IS ESSENTIAL

The Problem

SECURE RANDOMNESS IS HARD

Chronology of Failure of Modern RNGs

The Problem

CONNECTIVITY → VULNERABILITIES

Key Infrastructure

Power grid and government systems are constantly targeted by cyber warfare.

Communications Networks

Handle everything from online payments to secure messaging and networking systems.

Private Data

All our personal information from medical records to credit history is vulnerable to security leaks.

Global average cost of a data breach was \$4.88M in 2024

IBM Data Breach Report

Advances in the Cryptographic Stack

Software and User Interfaces

Post-Quantum Encryption
New Algorithms to resolve
vulnerabilities that would be
cause by the advent of
Quantum Computers
Post-Quantum ≠ Quantum

Advances in the Cryptographic Stack

Quantum Key Distribution
Using quantum properties to send
and exchange encryption keys
securely

Advances in the Cryptographic Stack

Randomness Remains Essential

Pseudo-Random Number
Generators
Software-based
Inherently deterministic

Classical True Random Number Generators Hardware-based Randomness is easily biased

Quantum Random
Number Generators
Hardware-based
There are no perfect
quantum systems in
practice

"Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin."

John Von Neumann

- Randomness isn't a binary property (no pun intended)
- Processes can be more or less random.

What is Entropy?

- Given a process X that produces a range of outputs x_i , each with a probability p_i , a measure of the general unpredictability of that process can be defined
- Entropy can refer to many different concepts from information theory which try to define unpredictability in different way
- The two most well-known definition is the Shannon entropy and the min-entropy which are respectively:

$$H_2(X) = -\sum p_i \log_2 p_i$$

$$H_{\infty} = -\log_2 \max_i p_i$$

What is Entropy?

- O Given a process X that produces a range of outputs x_i , each with a probability p_i , a measure of the general unpredictability of that process can be defined
- Entropy can refer to many different concepts from information theory which try to define unpredictability in different way
- The two most well-known definition is the Shannon entropy and the min-entropy which are respectively:

$$H_2(X) = -\sum p_i \log_2 p_i$$

$$H_{\infty} = -\log_2 \max_i p_i$$

How is this used?

- Min-entropy is the fundamental metric used in the theory of randomness extraction, as such it's the main way one can assess the randomness of a process
- Based on the min-entropy of a process, randomness extractors can be used to produce a uniformly distributed random output from that process
- Every element in the cryptographic stack relies on a trusted assessment of the entropy

Min-Entropy as a Function of the Most Likely Outcome Probability

$$H_{\infty} = 1$$
 bit

$$p = 1/6$$

$$H_{\infty} \approx 2.6 \text{ bits}$$

The Core Challenge

- Figuring out the entropy produced by simple idealized processes is easy
- Unfortunately, we cannot rely on flipping perfectly fair coins for the generation of our cryptographic keys in our security infrastructure
- Whether you are using classical hardware RNGs or are looking to use a quantum process, the challenge remains the same: how do you assess and. more importantly, guarantee the amount of randomness produced?

SOURCE DEVICE INDEPENDENT SELF-CERTIFICATION (DISC™)

SOURCE DEVICE INDEPENDENT SELF-CERTIFICATION (**DISC**™)

Patent: WO2018087516A1

DISCTM patent owned by the University of Oxford, licensed Exclusively and Perpetually to Quantum Dice

SOURCE DEVICE INDEPENDENT SELF-CERTIFICATION (DISC™)

Protects against attacks

Enables integrated design

Prevents silent failure

SOURCE DEVICE INDEPENDENT SELF-CERTIFICATION (DISC™)

APEX

- Rack-mount QRNG
- Generation Rate of up to 7.5 Gbps
- Suited for applications in data centres and enterprise hubs

VERTEX

- PCIe QRNG
- Generation rate of up to 2.66 Gbps
- Suited for integration within networking and cybersecurity hardware

Chip

- multi-GHz entropy source
- simple integration using standard electronic interfaces
- 5mm*5mm QFN Package

SOURCE DEVICE INDEPENDENT SELF-CERTIFICATION (DISC™)

Thank You.

annika.moslein@quantum-dice.com george.dunlop@quantum-dice.com

Trust Nature.

TAKE A MINUTE AND GIVE US FEEDBACK ...

← All Together

